首页> 外文OA文献 >Dense variational reconstruction of non-rigid surfaces from monocular video
【2h】

Dense variational reconstruction of non-rigid surfaces from monocular video

机译:单目视频中非刚性曲面的密集变分重建

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper offers the first variational approach to the problem of dense 3D reconstruction of non-rigid surfaces from a monocular video sequence. We formulate non-rigid structure from motion (nrsfm) as a global variational energy minimization problem to estimate dense low-rank smooth 3D shapes for every frame along with the camera motion matrices, given dense 2D correspondences. Unlike traditional factorization based approaches to nrsfm, which model the low-rank non-rigid shape using a fixed number of basis shapes and corresponding coefficients, we minimize the rank of the matrix of time-varying shapes directly via trace norm minimization. In conjunction with this low-rank constraint, we use an edge preserving total-variation regularization term to obtain spatially smooth shapes for every frame. Thanks to proximal splitting techniques the optimization problem can be decomposed into many point-wise sub-problems and simple linear systems which can be easily solved on GPU hardware. We show results on real sequences of different objects (face, torso, beating heart) where, despite challenges in tracking, illumination changes and occlusions, our method reconstructs highly deforming smooth surfaces densely and accurately directly from video, without the need for any prior models or shape templates.
机译:本文为从单眼视频序列对非刚性表面进行密集3D重构的问题提供了第一种变型方法。我们将来自运动(nrsfm)的非刚性结构公式化为全局变分能量最小化问题,以便在给出密集2D对应关系的情况下,估计每帧的密集低阶平滑3D形状以及相机运动矩阵。与传统的基于nrsfm的因式分解方法不同,该方法使用固定数量的基本形状和相应的系数对低秩非刚性形状进行建模,我们直接通过迹线范数最小化来最小化时变形状矩阵的秩。结合这种低秩约束,我们使用保留边缘的总变化正则项来获得每帧的空间平滑形状。得益于近端拆分技术,优化问题可以分解为许多点式子问题和简单的线性系统,这些问题可以在GPU硬件上轻松解决。我们显示了不同物体(面部,躯干,心脏跳动)的真实序列的结果,尽管在跟踪,照明变化和遮挡方面存在挑战,我们的方法直接从视频中密集且准确地重建了高度变形的平滑表面,而无需任何现有模型或形状模板。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号